Week 13 of m151
(§ 2, Mr. Lane)
24–28 April 2017

Math Learning Center (in Math 011) has tutors:
9am–4pm on Monday–Thursday and 9am–1pm on Friday

math@Mansfield (Library) has tutors: 6:30pm – 9:00pm on Sunday–Thursday

math@Mansfield (Library) has tutors: 6:30pm – 9:00pm on Sunday–Thursday

- Monday [d40] (24 April 2017)
WeBWorK:
RQ-11-1 closes at 10 am
- Study section 11.1 (
*Power Functions and Proportionality*).- learn how to model quantities which are
*directly proportional*to each other - learn how to analyze quantities which are
*inversely proportional*to each other - recognize how to handle a situation where quantity A is (directly or inversely) proportional to a particular power of quantity B
- identify a power function's behavior for inputs close to zero
and for inputs far from zero (long-run behavior);
learn how to interpret & use
**limit**notation

- learn how to model quantities which are
- Work on these problems in section 11.1:
s1, s3, s5, s7–s10;
1, 3, 7, 9–12, 15, 21 & 22;
29,
**34**, 36, 39–40, 43, 44, 47, 49

- Study section 11.1 (
- Tuesday [d41]
WeBWorK:
RQ-11-2 closes at 10 am,
day-39 closes at 11 pm
- Study section 11.2 (
*Polynomial Functions*).- A polynomial function is continuous everywhere.
- Long-run behavior of a polynomial
is determined by its
*leading term*.

- Work on these problems in section 11.2:
s3, s5–s8;
6, 11, 15, 19, 21;
24, 27,
**28–31**, 35, 37, 42,**45** - Study Example 1 of section 11.3 & figure 11.31 (page 451). Then modify Example 11.2.3 (middle of page 447) by creating two variants of f(x) which also resemble the cubic power function (in some viewing rectangle).
- Anticipate a quiz on Tuesday or Wednesday.

- Study section 11.2 (
- Wednesday [d42]
WeBWorK:
RQ-11-3 closes at 10 am,
day-40 closes at 11 pm
- Study section 11.3 (
*Short-Run Behavior of Polynomials*).- Value of a polynomial function can change sign
**only**at one of its zeros. - Zeros of a polynomial are endpoints of intervals where its sign does not change.
- If p(x) is a polynomial function and c is a number, then
p(c) = 0 if and only if x − c is a factor of p(x)

- Value of a polynomial function can change sign
- Work on these problems in section 11.3:
s2, s6, s7;
3, 5, 7,
**9**; 13,**15**, 19,**23**, 25, 31, 35,**40**, 43, 47

- Study section 11.3 (
- Friday [d43]
WeBWorK:
RQ-11-4 closes at 10 am,
day-41 closes Saturday at 11 pm
- Write-up solutions of these five problems —
show your work and interpret your results. Hand-in your written
homework at the
**start**of Friday's class.**section**10.3 11.1 11.2 11.3 **problems**40 46 32, 38 44 - Review the algebra of fractions by studying the
*Skills Refresher: Algebraic Fractions*on pages 491–494. Work on its Exercises 1, 3, 9, 11, 16, 19, 29, 33, 41, 49, 51, 47,**53–58**. - Study section 11.4 (
*Rational Functions*).- Put your initial emphasis on understanding the long-run behavior
of some rational functions, e.g., the
*average cost*example which starts the section. - In the long run, a rational function behaves like a power function.
- If R(x) is polynomial N(x) divided by polynomial D(x) and if the graph of R has a horizontal asymptote, what can be said about the relation between N and D?

- Put your initial emphasis on understanding the long-run behavior
of some rational functions, e.g., the
- Work on these problems in section 11.4:
s2, s3, s8, s9;
3, 8, 9, 11, 13, 15, 21;
25,
**27**, 28,**31**, 33

- Write-up solutions of these five problems —
show your work and interpret your results. Hand-in your written
homework at the

© Richard B Lane
Last modified: 21 April 2017, Friday 08:35